

DOE Solar Energy Technologies Program Peer Review

Interface and Electrode Engineering for Next-Generation Organic Photovoltaic Cells

Denver, Colorado April 17-19, 2007

Research Relevance/Objective

"...to address the near term and long-term Future Generation PV goals by interface and electrode engineering to enable next-generation, efficient, easily manufacturable, and durable organic photovoltaics (OPVs)."

- Improved transparent electrode materials (transparent conducting oxides, TCOs) for OPVs
- Improved electrode-organic interfaces in OPVs

Summary Of Activities

Electronic Structure Theory (Freeman)

Exploratory Synthesis (Poeppelmeier)

Novel Films/Architectures (Chang, Marks)

Defects/Doping/Transport (Mason)

Films/Interface Modification/
Device Fabrication

(Marks)

OPVs

Our collaborators

- NREL
- BP-Solar
- Konarka

Outline

Background

TCO Surface Electronic Structure

CdO and Double Layer CIO/ITO Films

Donor-Doped (?) Delafossite

Accomplishments

Parent Oxides

- CdO
- SnO₂
- In₂O₃
- ZnO
- Ga_2O_3

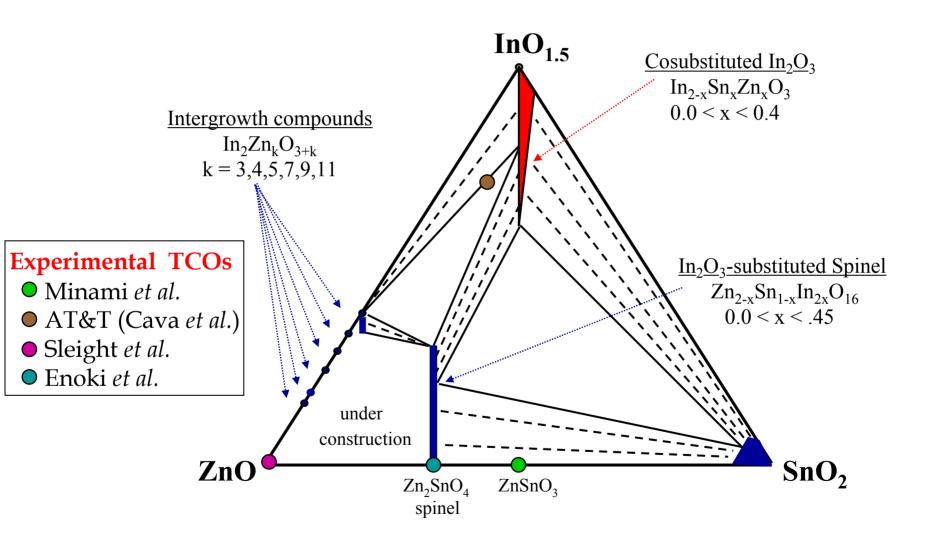
Binary Compounds

- · Cd₂SnO₄
- CdIn₂O₄
- CdSnO₃
- ZnSnO₃
- Zn₂SnO₄

- ZnGa₂O₄
- In₄Sn₃O₁₂
- $Zn_k In_2O_{k+3}$ (k=3,7-15 odd)
- $Zn_2In_2O_5$ (k=2)
- MgIn₂O₄
- 12CaO•7Al₂O₃

Binary Solid Solutions

• Ga_{2-2x}In_{2x}O₃

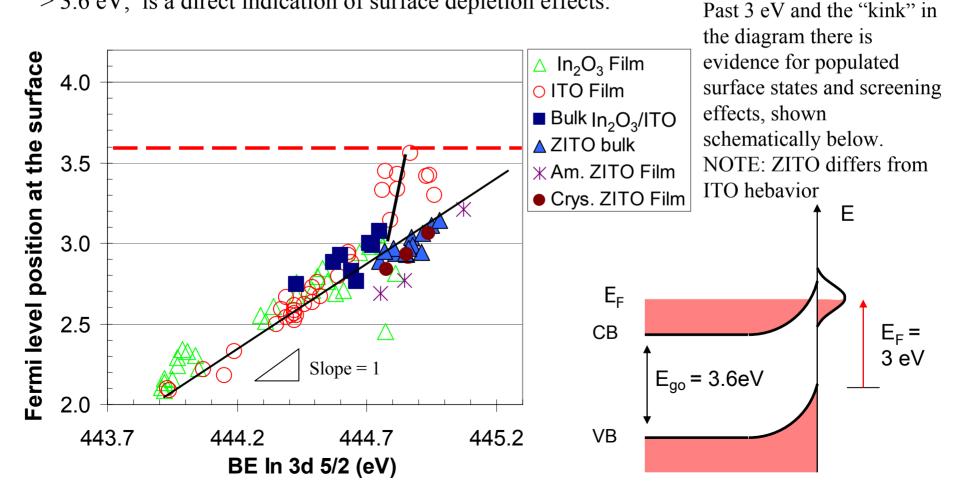

Ternary Compounds

• $Ga_{3-x}In_{5+x}Sn_2O_{16}$

Ternary Solid Solutions

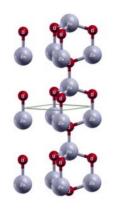
- In_{1-x}Ga_{1+x}O₃(ZnO)_k (k=1,2,3)
- $\cdot Zn_{2-x}Sn_{1-x}In_{2x}O_4$
- In_{2-2x}Sn_xZn_xO₃
- xCd₂SnO₄-(1-x)CdIn₂O₄
- In_{2-2x}Cd_xSn_xO₃
- Cd_{1-x}Sn_{1-x}In_{2x}O₃
- xZn₂SnO₄-(1-x)ZnGa₂O₄
- New TCOs have electrical conductivities comparable to or greater than ITO making current collection more efficient
- Transparency windows broader than ITO allowing greater solar fluencty to reach the active layer
- •Greater chemical stability towards corrosion.

ZnO-ln₂O₃-SnO₂ at 1250°C

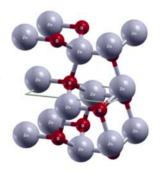


Surface Depletion in Bixbyite TCOs

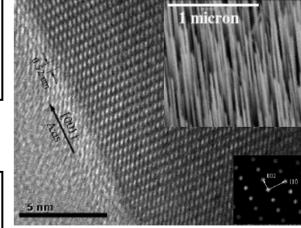
• For all bixbyite materials investigated, the surface E_F position is lower than the intrinsic gap of In₂O₃ (which is 3.6 eV, shown as red line in plot below).


• This, combined with optical transmission data for films confirming a bulk band gap

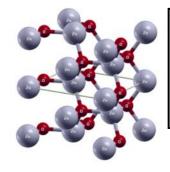
> 3.6 eV, is a direct indication of surface depletion effects.


Work functions of polar and nonpolar ZnO surfaces by FLAPW

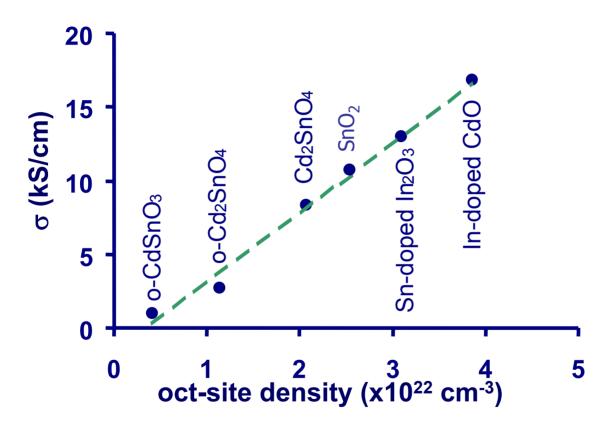
(0001)



	Work Functions			
	Non-Relaxed		Relaxed	
	Cation Surface	Anion Surface	Cation Surface	Anion Surface
LDA (eV)	3.95	8.76	3.34	7.43
GGA (eV)	3.57	8.38	3.11	7.28


(1010)

	Work Functions		
	Non-Relaxed	Relaxed	
LDA (eV)	5.06	5.31	
GGA (eV)	4.50	4.78	



 $(11\bar{2}0)$

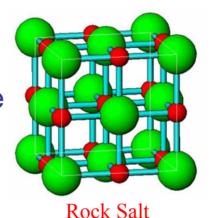
	Work Functions		
	Non-Relaxed	Relaxed	
LDA (eV)	5.14	5.19	
GGA (eV)	4.58	4.76	

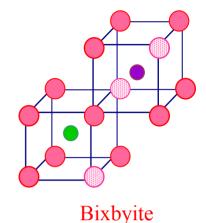
Conductivity vs. Octahedral Site Density

o-CdSnO₃: R. D. Shannon, et al, J. Phys. Chem. Solids, 38, 877 (1977).

G. Haacke, Appl. Phys. Lett., 28, 622 (1976).

Cd₂SnO₄: X. Wu, et al, J. Vac. Sci. Technol., A15, 1057 (1997).

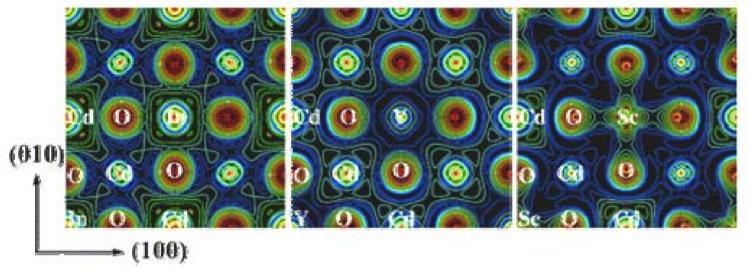

Sn-doped In₂O₃: H. Ohta, et al, J. Appl. Phys., 91[6] 3547 (2002).


In-doped CdO: A. Wang, et al, Proc. Nat. Acad. Sci., 98, 7113 (2001).

CdO Properties

CdO

Simple Cubic Crystal Structure
Broad 5s Conduction Band
Low Carrier Effective Masses


In_xCd_{1-x}O

Simple, Homogeneously Doped Crystal Structure Extensive Cd 5s + In 5s Mixing

- Uniform Charge Density, Fewer Ionized and Neutral Scattering Centers
- Large Hopping Integrals, Low Effective Carrier Masses Burstein-Moss Shift Increases Gap (Transparency Window)
 Burstein-Moss Shift Compensates for Gap Shrinkage

EXPERIMENT VS. THEORY. DOPED CdO BAND STRUCTURES

Vary Dopant Ionic Radius, Electronic Structure: In+3, Y+3, Sc+3

Calculated charge density distribution in *ab* plane within energy window of 27 meV below Fermi level for In-, Y-, and Sc-doped CdO. Only atoms within one unit cell are labeled.

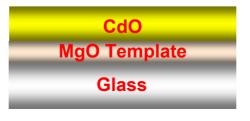
- ➢ Grain boundary scattering effects of minor importance in both epitaxial and polycrystalline CdO films
- ➤ Most effective dopants are those in which there is extensive hybridization of dopant and Cd⁺² 5s states
- **≻**Burstein-Moss bandgap widening effects operative
- ➤ Small dopant ions can actually reduce Cd-O hybridization

Amorphous Substrates/MgO(100) Template Layers

Motivation

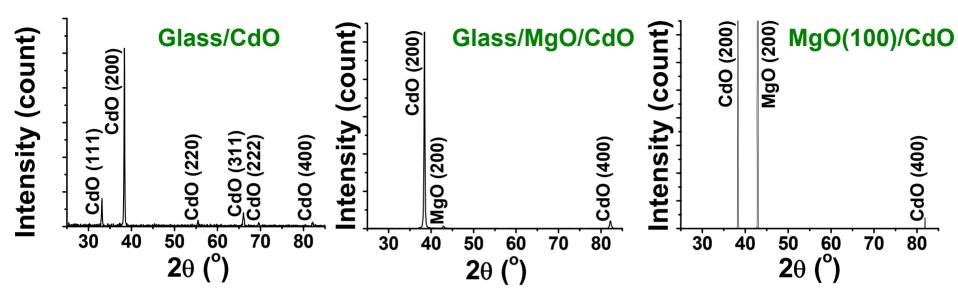
- **❖CdO** films on single-crystal substrates show better orientation & larger µ than on glass.
- **❖Single-crystal MgO** is best substrate to simultaneously achieve large μ & high orientation of CdO thin films.
- **❖Smaller X-ray FWHM** → higher mobility.

Benefits


- ➤ MgO: Widely used as template, buffer layer to induce oriented growth
- ➤ Reduce substrate cost vs. single-crystal substrates
- ➤ Negligible chemical effects on CdO films

Compare: CdO Growth on Three Different Substrates

CdO/Glass

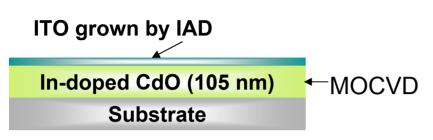


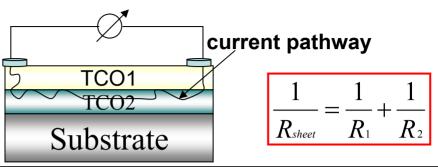
CdO
Single-Crystal MgO(100)

CdO/MgO/Glass

CdO/MgO(100)

Parallel CdO Growth

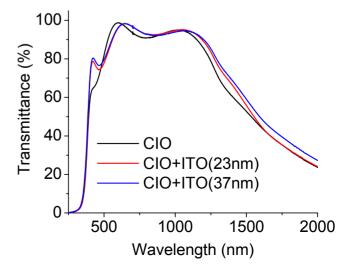



Substrate	CdO Thickness (nm)	Conductivity (S/cm)	Carrier Concentration (×10 ²⁰ cm ⁻³)	Mobility (cm²/V⋅s)	X-Ray FWHM (°)
Glass	290	5450±80	2.58±0.10	129±8	19
MgO Template/Glass	310	6700±210	2.65±0.15	159±5	2.1
Single-Crystal MgO(100)	690	8460±200	2.33±0.07	226±10	0.4

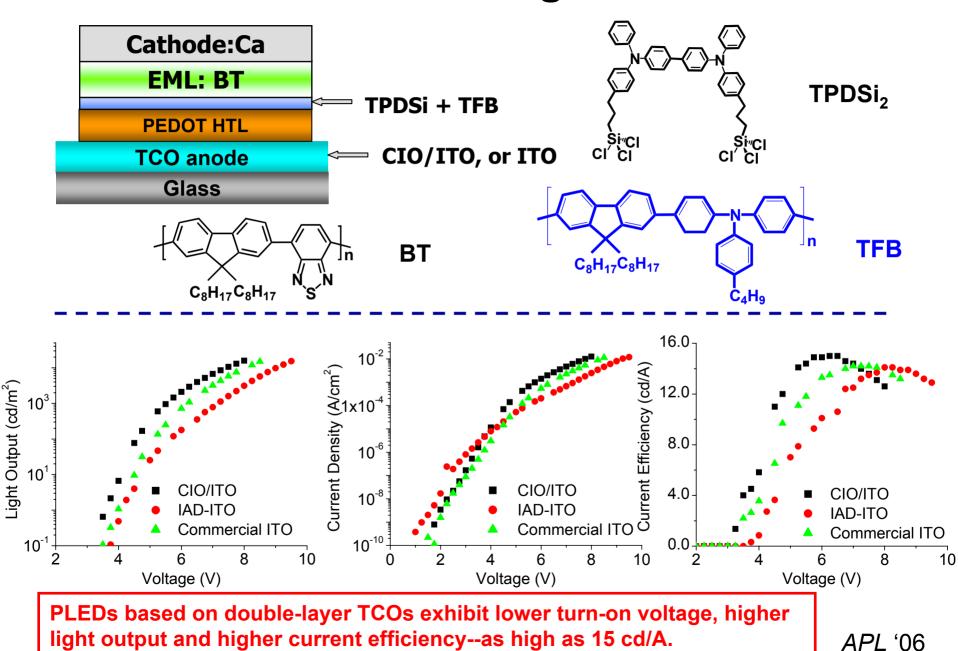
CdO conductivity on MgO(100) template significantly improved due to increased crystallinity and mobility.

APL '06

Tuning CdO Corrosion



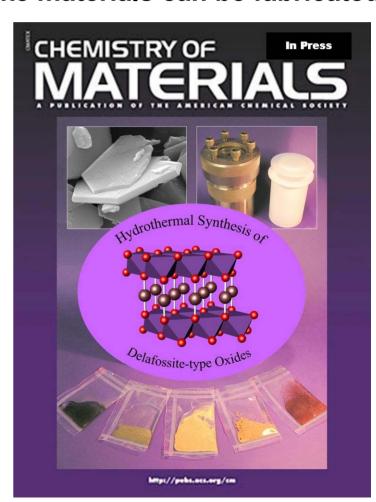
Sample	Thickness (nm)	Sheet Resistance (Ω/\Box)	Transmittance (%)	Figure of Merit $\Phi = T/R_{sheet} (10^{-3}\Omega^{-1})$	In-Content (%)
CIO	167	5.6	86.4	41	4.3
CIO/ITO (23 nm)	180	5.6	87.1	45	15.8
CIO/ITO (37 nm)	194	6.1	88.0	46	21.4
ITO	130	18.0	95.1	34	90


Payoff

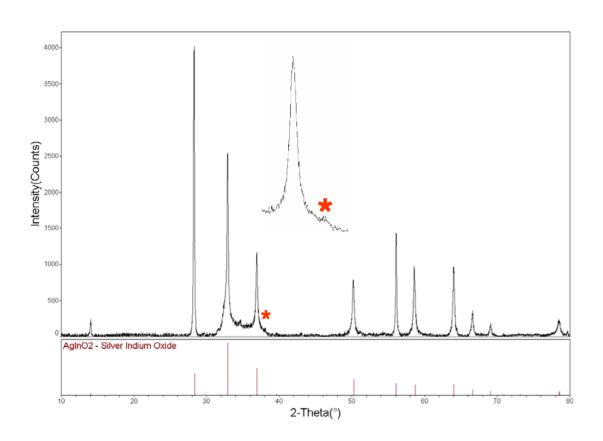
- ✓ Lower sheet resistance, ideal for large scale displays
- ✓ Greater optical transparency, broader band gap
- ✓ Smoother surface morphology
- ✓ Tunable work function
- ✓ Higher environment stability, e.g. reducing atmosphere.
- ✓ Lower cost, reduce In content

Optical Properties

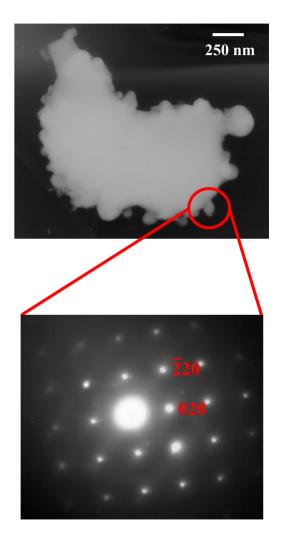
PLED Performance Using CIO/ITO Anodes


Delafossite-Type Oxides

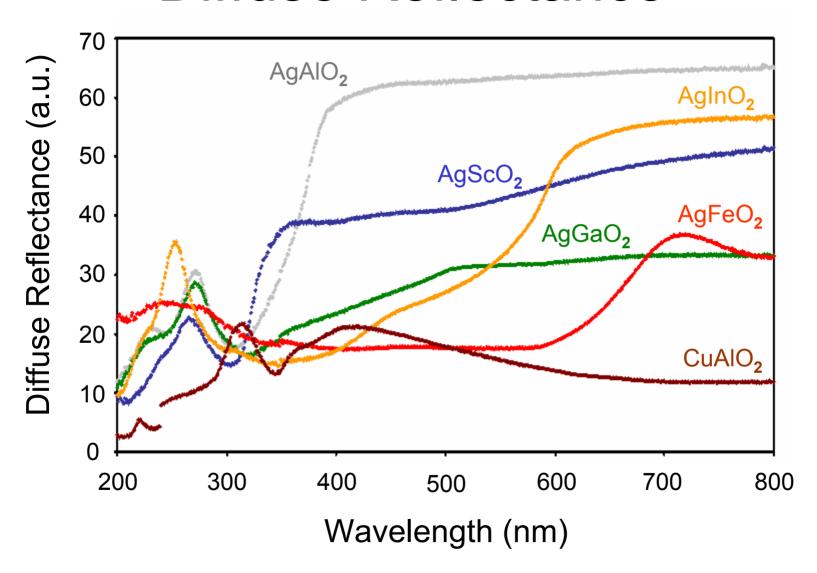
 Hydrothermal process successfully overcomes challenges of prior synthetic methods by providing the first single step, *low temperature* and pressure, route by which delafossite-like materials can be fabricated


with phase purity.

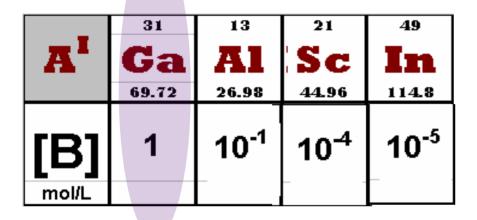
• CuAlO₂, CuGaO₂, (CuInO₂ missing !), CuScO₂, CuFeO₂ (the mineral delafossite) and AgAlO₂, AgGaO₂, AgInO₂ (!!!), AgScO₂, AgFeO₂ have been prepared in a similar fashion.


Solid solution, CuAl_{1-x}Ga_xO₂
 (where 0≤x≤1), which is currently not accessible by a high temperature solid state method, also synthesized.

One-Step Synthesis of Ag-Delafossites



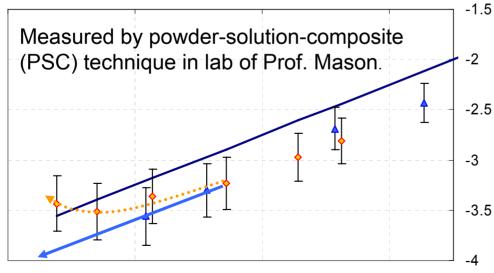
 $AgInO_2$, as with all other Ag-delafossites synthesized by this technique, has a minor amount of Ag^0 present. This impurity can be traced back to the the Ag^0 impurities present in the starting Ag_2O reagent (as seen in the TEM images to the right).


Ag [001] zone axis

Diffuse Reflectance

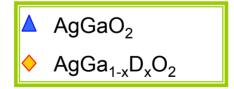
Hole Doping

-2.25



-3.25

-3.75


σ composite

Compounds	Form	σ (S/cm)
$CuGaO_2$	powder	0.0056
$CuGaO_2$	film	0.006
$AgGaO_2$	crystal	2 x 10 ⁻⁸
$AgGaO_2$	film	3.2×10^{-4}
AgGaO ₂	powder	≤ 10 ⁻⁴

 σ solution

-2.75

Major Scientific Issues

 Improper chemical and electronic matching between transparent electrodes and organic active layer

Current losses and leakage at interfaces

Poor adhesion/interfacial stability

Broad Future Plans

- TCO electrodes which are electronically, chemically, and surface compatible with the active organic elements of OPVs.
- Efficient current extraction, interfacial stable, charge-blocking layers for OPV.
- Basic science of the electrode interface leading to improved understanding and guidance for next-generation OPV materials design.